射頻非線性器件的建模與測試

2017-08-11  by:CAE仿真在線  來源:互聯(lián)網(wǎng)

在快速發(fā)展、競爭激烈的非線性設(shè)計領(lǐng)域,能夠用最短的時間將新器件技術(shù)轉(zhuǎn)變?yōu)樽罱K產(chǎn)品的能力是公司取得成功的關(guān)鍵。近來發(fā)展最好的方法是使用行為模型。此方法與相關(guān)測試測量方案的優(yōu)點相結(jié)合,可以極大地縮短產(chǎn)品設(shè)計周期。本文將闡述一種專門的測量/建模解決方案,無論是簡單的50歐姆系統(tǒng)級測試,還是需要波形工程的針對任意負(fù)載阻抗的全諧波特性描述,都可以進(jìn)行表征。

1.Cardiff Model Lite

1.1 測量基于多諧波失真 (PHD) 模型

近幾年,隨著大量成形的商用解決方案的發(fā)布,例如 Mesuro 的 Cardiff Model 系列,使得非線性器件的行為建模受到了極大的關(guān)注。

人們對此類模型的期望很高,但是,要想從這些模型中獲得最大的幫助并準(zhǔn)確地模擬器件的性能,就必須充分理解模型的工作原理和適用的條件。

1.2 三階 PHD 模型,Cardiff Model Lite:

“Cardiff Model Lite”基于三階多項式模型,允許在大信號情況下擴展 S 參數(shù)。它采用多諧波失真 (PHD) 行為模型公式 [1],如圖 1 所示。它基于諧波疊加原理,此原理可以描述為激勵“A”波 (Aqn) ,圍繞大信號操作點 (LSOP) 進(jìn)行線性映射,實現(xiàn)線性化的大信號“B”波 (Bpm) 響應(yīng)。

射頻非線性器件的建模與測試HFSS分析案例圖片1

圖 1:PHD 模型多項式

DUT 首先由基波驅(qū)動,在本例中為 A11。在每個基波輸入功率 (A11) 下,也會同時在各諧波頻率下加入一個小信號對器件進(jìn)行擾動(Aqn – 其中 q 表示端口序號,n 表示諧波階數(shù))。這可以通過網(wǎng)絡(luò)分析儀中的第二個源實現(xiàn)。此信號源的相位通過至少 6 個不同的相位點進(jìn)行掃描,以使模型正確地預(yù)測器件性能。使用 Mesuro CML 單元內(nèi)提供的電路,可在器件兩端完成此擾動處理。因此,對于每一個諧波分量,通過最小二乘擬合算法應(yīng)用于測量數(shù)據(jù),可以獲得相應(yīng)的模型參數(shù) S 和 T。

所有三階行為模型均為局部模型,僅適用于特定的操作條件如阻抗、偏差、溫度等。只有正確地進(jìn)行測量,模型才能在測量范圍內(nèi)高度準(zhǔn)確的預(yù)測器件的性能,并作出正確的外推。請注意,必須謹(jǐn)慎對待外推,如果過度偏離測量的操作條件,此類模型會返回模棱兩可的結(jié)果。最好是在 I-V 空間中考慮此外推過程(采用非數(shù)學(xué)方法!)。PHD 模型的提取過程需要在器件的輸入和輸出端激勵基波和諧波的小信號,并且還要能夠改變相位。

射頻非線性器件的建模與測試HFSS圖片2

圖 2: F0 擾動下的典型阻抗掃描

為簡單起見,我們以基波為例,注入信號會導(dǎo)致阻抗發(fā)生變化,測量負(fù)載變化或 “負(fù)載牽引”的示例如圖 2 所示。同時,利用圖 3 所示的晶體管 I-V 曲線和 RF 負(fù)載線,就可以推測出圖 3 左側(cè)所示的系統(tǒng)阻抗下的壓縮特性(標(biāo)稱阻抗 50 歐姆)。此時,改變負(fù)載,負(fù)載線就會上下移動,從而有效地“映射”如右圖所示的器件邊界特性。

射頻非線性器件的建模與測試HFSS圖片3

圖 3 - 阻抗為 50 歐姆和阻抗掃描時的負(fù)載線

如果我們關(guān)注膝點區(qū)域,使用測量數(shù)據(jù)施加曲線擬合,就可以準(zhǔn)確地對測量數(shù)據(jù)進(jìn)行建模。少量外推會產(chǎn)生比較好的效果,但是,過多的外推會導(dǎo)致模型失效,如圖 4 所示。

很明顯,如果正確使用此模型,將會是模擬器獲得非線性數(shù)據(jù)的卓越方法,同時應(yīng)采用與 S 參數(shù)模型類似的方法來考慮此模型。采用與 S 參數(shù)類似的方法時,如果將細(xì)密網(wǎng)格用于頻率和偏差,則模擬器的內(nèi)推將產(chǎn)生良好的效果。典型應(yīng)用是在系統(tǒng)級仿真時,對大量的“50 歐姆”器件進(jìn)行串聯(lián),并分析它們的基波和諧波特性。類似技術(shù)也可用于負(fù)載阻抗,例如對功率晶體管建模來設(shè)計放大器;此內(nèi)容將在“Cardiff Model+”部分詳細(xì)探討。

射頻非線性器件的建模與測試HFSS圖片4

圖 4 – 模型失效的膝區(qū)“擬合”示例

1.3 試驗布置和測量

第一階段是將只能進(jìn)行線性測量的 VNA 轉(zhuǎn)變?yōu)槟軌驕y量諧波相位關(guān)系的非線性 VNA。然后,將其用于重建時域波形。此時需要相位基準(zhǔn)在掃描 VNA 頻率時跟蹤相位關(guān)系。Mesuro/Rohde & Schwarz 方法采用經(jīng)調(diào)整處理的非線性設(shè)備,在基本頻率下進(jìn)行壓縮測量。此設(shè)備與使用梳狀諧波發(fā)生器(基于階躍恢復(fù)二極管或非線性傳輸線)的其他商業(yè)產(chǎn)品不同,可以在較高頻率下驅(qū)動。由于大部分能量集中在測量頻率處,該方法可以改善諧波分量的表征,并且在參考器件的初始表征以及進(jìn)行非線性測量時提供更大的動態(tài)范圍。

對于諧波模型提取,需要額外的硬件發(fā)送和組合信號,以實現(xiàn)在器件的輸入和輸出端進(jìn)行所需的擾動測量。Mesuro CML 單元(如圖 5 所示)將相位基準(zhǔn)和信號調(diào)節(jié)硬件集于一體,可以與任何 4 端口 R&S ZVA 矢網(wǎng)一起使用,并且可覆蓋的頻率范圍可達(dá) 67GHz。

射頻非線性器件的建模與測試HFSS圖片5

圖 5 - Mesuro CML 硬件

Mesuro CML 發(fā)生器的軟件套件(請參見圖 6 和圖 7)可以進(jìn)行非常方便的設(shè)置和靈活測量,從而得到最佳模型。特色功能包括:

? 器件預(yù)表征測量,讓用戶更好的了解提取的關(guān)鍵參數(shù)。

? 相位點數(shù)的靈活性。

? 獨立控制擾動信號的幅度大小 - 對各諧波進(jìn)行源功率校準(zhǔn)。

? 后期分析工具可以顯示實際的負(fù)載擾動和根據(jù)測量的數(shù)據(jù)集驗證模型擬合的關(guān)鍵能力

射頻非線性器件的建模與測試HFSS分析圖片6

圖 6:測量性能和建模性能之間的對比

射頻非線性器件的建模與測試HFSS分析圖片7

圖 7:提取的模型參數(shù)

2.負(fù)載牽引、波形工程和 Cardiff Model+

2.1 基于 VNA 的有源負(fù)載牽引架構(gòu)

非線性器件不能總是只基于 50 歐姆的阻抗環(huán)境,而且與線性 S 參數(shù)不同,它無法將一個阻抗下測量的數(shù)據(jù)轉(zhuǎn)換為另一阻抗下測量的數(shù)據(jù)。因此,為了獲取必要的設(shè)計信息,需要對器件在不同阻抗下的特性全部進(jìn)行測試,這導(dǎo)致測量集合顯著增加。幸運的是上述 Cardiff Model Lite 系統(tǒng)中的相同“模型單元”可再次使用來實現(xiàn)功能更強的系統(tǒng)。通過添加額外的信號源和合路器,就可以使新系統(tǒng)能夠在基波和諧波頻率下進(jìn)行阻抗控制。然后,通過偏置和阻抗變化,就可以利用得到的波形深入了解 DUT 特性或優(yōu)化性能(波形工程)。開環(huán)有源諧波負(fù)載牽引系統(tǒng)的示意圖如圖 8 所示。

開環(huán)有源負(fù)載牽引 [2](如圖 8 所示)是無源負(fù)載牽引技術(shù) [3] 的替代選擇, “a2”由相位同步信號源取代,反射信號的幅度和相位也可以綜合改變。值得注意的是,每個諧波的控制需要單獨的源。

射頻非線性器件的建模與測試HFSS分析圖片8

圖 8 - 開環(huán)諧波負(fù)載牽引示意圖

Rohde & Schwarz 最新的矢量網(wǎng)絡(luò)分析儀能夠完美地用于此方法,全新的ZVA 具有4個基于“直接數(shù)字合成 (DDS)”的源。這在許多方面都可以帶來很大的好處。首先,在同時執(zhí)行基次、二次和三次諧波負(fù)載牽引時,可以提供足夠的源來驅(qū)動器件。此外,多個 DDS 源之間不會隨著時間出現(xiàn)相位的相對漂移。

在圖 9所示的 DDS 合成器中,調(diào)諧控制字定義相位變化的梯度以及 DDS 的頻率。正弦波查找表將相位值重新轉(zhuǎn)換為數(shù)字幅度值,例如,對于 16 位控制字,可以從 0 到 65536。再由 D/A 轉(zhuǎn)換器得到正弦波;然后使用抗混疊低通濾波器濾波。此正弦波被用作鑒相器的參考信號。然后,PLL(鎖相環(huán))將 VCO(壓控振蕩器)的相位與參考信號鎖定起來。這樣就可以通過 DDS 信號設(shè)置 VCO 頻率。

射頻非線性器件的建模與測試HFSS分析圖片9

圖 9 - 基于 DDS 的信號源

與采用模擬的 PLL 設(shè)計相比,此類源具有許多優(yōu)勢,包括改善相位噪聲,提高頻率捷變速度以及精確控制輸出相位和頻率等。由于用于下變頻的本地振蕩器和所有內(nèi)部源均由 R&S ZVA 的同一個數(shù)字時鐘驅(qū)動,因此,測量信號幾乎沒有漂移現(xiàn)象。

文獻(xiàn)[4] 對此在 24 小時周期內(nèi)進(jìn)行了測試和驗證展示。這個主要有兩個好處。第一,它允許以更高的頻率進(jìn)行有源負(fù)載牽引,使用模擬 PLL 的源之間會產(chǎn)生漂移從而使有源負(fù)載牽引方法變得不可行。在基于 R&S ZVA 的方案中,Mesuro 已實現(xiàn)頻率高達(dá) 60GHz的精確有源負(fù)載牽引。第二,由于 LO 也與信號發(fā)生器鎖定在一起,可以實現(xiàn)不同掃描之間非常穩(wěn)定的相位關(guān)系,從而使重構(gòu)出來的波形不隨時間發(fā)生變化。這意味著只需要在校準(zhǔn)期間對相位基準(zhǔn)進(jìn)行確認(rèn),就允許在有源諧波負(fù)載牽引時使用ZVA所有的源。

2.2 有源負(fù)載牽引和波形工程的好處

上述有源負(fù)載牽引方法有很多好處,包括能夠在史密斯圓圖內(nèi)外控制阻抗,減少系統(tǒng)占用面積以及最重要的提高測試速度。最近發(fā)表的論文 [5] 表明,使用相同的測量儀器和設(shè)置時,可將 100 點負(fù)載網(wǎng)格的測試速度減少7倍,即從 4.5 分鐘縮短到只有 41 秒。該論文還展示了獲得專利的準(zhǔn)閉環(huán)架構(gòu),其在測量速度極其重要的情況下大有幫助,例如在生產(chǎn)環(huán)境中。此架構(gòu)保持了開環(huán)方法的系統(tǒng)穩(wěn)定性,同時進(jìn)一步提高速度,相同的負(fù)載牽引測試時間縮短為只有 18.5 秒。

對于希望不僅僅改善負(fù)載牽引性能的人士來說,該系統(tǒng)也可用于測量和設(shè)計器件的時域電壓和電流波形。此方法可以為設(shè)計師提供非常有價值的器件特性視角。波形工程主要有兩個應(yīng)用方向 [6],第一個應(yīng)用是工藝開發(fā)方面,波形工程可用于確定工藝問題的根源 [7]。第二個應(yīng)用是優(yōu)化器件特性,無需迭代就能實現(xiàn)最好的設(shè)計[8-9]。

2.3 案例一 – 器件特性退化

此案例[7] 將說明使用波形工程來分析出現(xiàn)特性退化的 GaN HFET 器件,通過結(jié)合 RF 和 DC 測量來分析問題的根本原因。圖 10 所示為通過輸出電流波形(疊加 100 個波形)觀察到的退化現(xiàn)象,原始波形顯示為紅色,最終波形顯示為藍(lán)色。

射頻非線性器件的建模與測試HFSS培訓(xùn)課程圖片10

圖 10 – 顯示退化的輸出電流波形

峰值電流明顯減小,導(dǎo)致輸出功率和效率降低。接下來進(jìn)行應(yīng)力測試,要完成此測試,首先在加電開啟時進(jìn)行 DC 和 RF 測量,然后在 90 分鐘后再次進(jìn)行 DC 和 RF 測量。圖 11 所示為疊加 RF 負(fù)載線(通過根據(jù)輸出電流繪制輸出電壓而形成)的 DCIV曲線,紅色是初始時的測試值,應(yīng)力測試后,在 RF 負(fù)載線和 DCIV 曲線中均可看出退化。

射頻非線性器件的建模與測試HFSS培訓(xùn)課程圖片11

圖 11 - RF 負(fù)載線和 DCIV 曲線預(yù)應(yīng)力和后應(yīng)力分析

使用波形工程,可以只在器件的部分IV 區(qū)域進(jìn)行表征。例如,通過將器件偏置在低漏極電壓和高靜態(tài)電流的工作狀態(tài),然后限制輸入功率,就可以只表征 IV 曲線的高電流區(qū)域,如圖 12 所示。相反地,通過將器件偏置在較高的漏極電壓和低靜態(tài)電流狀態(tài),可以只表征 IV 特性的高電壓區(qū)域,如圖 13 所示。在這兩種情況下,盡管保持 RF輸入功率不變,但是看一下 DCIV曲線,可以清楚的看到器件退化是由高電壓區(qū)域內(nèi)的強電場造成的,而非高電流產(chǎn)生的熱效應(yīng)造成的。了解這方面的信息后,工藝開發(fā)團(tuán)隊就可以定位問題所在,及時解決問題。

射頻非線性器件的建模與測試HFSS培訓(xùn)課程圖片12

圖 12 - 只高電流激勵的應(yīng)力測試

射頻非線性器件的建模與測試HFSS培訓(xùn)課程圖片13

圖 13 - 只高電壓激勵的應(yīng)力測試

2.4 Cardiff Model+

上面已經(jīng)展示了波形工程的重要作用,本節(jié)將說明如何利用更加高級的行為模型將設(shè)計過程移回到仿真器中。雖然行為建模技術(shù)(例如 X-Parameters?)可以解決阻抗的問題,但對于每一個阻抗點,都需要創(chuàng)建大量的非線性模型數(shù)據(jù),同時還需要在仿真器中進(jìn)行大量的內(nèi)插。相反地, Cardiff Model+ 多項式,盡管也是從 PHD 模型多項式衍生而來,卻能夠擴展多項式的階數(shù),使單個模型就可適用于所有阻抗情況 [10]。這樣可以顯著減小模型文件的大小。

2.5 案例研究 – Cardiff Model+

本案例展示了一個0.5W pHEMT 器件在9GHz 建模的過程和結(jié)果。在本例中,模型只針對諧波阻抗的一些固定集合,但也可根據(jù)需要包含在多項式中。一旦完成負(fù)載牽引測量,創(chuàng)建模型的過程就變得非常簡單,將測試數(shù)據(jù)加載到模型生成軟件,選擇相應(yīng)的模型類型,在本例中只選擇基本模型,然后導(dǎo)出模型。模型文件還可以導(dǎo)出為適合 ADS 或 Microwave Office 軟件使用的格式,如圖 14 所示。

射頻非線性器件的建模與測試HFSS結(jié)果圖片14

圖 14 - 模型生成軟件

一旦模型完成,就可在模型生成器中直接驗證結(jié)果。導(dǎo)出的模型可在 CAD 環(huán)境中使用,請參見圖 15,而且可以進(jìn)行傳統(tǒng)的功率和效率分析以及執(zhí)行波形工程。

射頻非線性器件的建模與測試HFSS結(jié)果圖片15

圖 15 - 在 Microwave Office 中運行的 Cardiff Model+

圖 16 和 17 分別展示了建模和測量的負(fù)載牽引測試圓圖和波形的對比,說明模型準(zhǔn)確預(yù)測器件在不同阻抗性能的能力。

射頻非線性器件的建模與測試HFSS結(jié)果圖片16

圖 16 -建模和測量的負(fù)載牽引曲線

射頻非線性器件的建模與測試HFSS結(jié)果圖片17

圖17 -建模和測量的時域電壓和電流波形

4. 結(jié)論

本文展示了如何將 VNA 技術(shù)的發(fā)展與非線性測量解決方案的發(fā)展相結(jié)合,以使新器件和集成非線性器件模塊的設(shè)計流程實現(xiàn)簡單化。介紹并探討了 Cardiff Model Lite 這一簡單的行為模型及其作為基本模型的限制。還介紹了根據(jù) Rohde & Schwarz VNA 最新技術(shù)開發(fā)的最先進(jìn)的測量系統(tǒng),說明了如何使用有源負(fù)載牽引改善負(fù)載牽引平臺的性能。接下來,通過工藝開發(fā)和大功率放大器設(shè)計方面的案例研究,介紹了波形工程。最后介紹了更加高級的行為模型多項式 Cardiff Model+,允許用戶將波形工程方法完全嵌入到仿真環(huán)境中。

作者

Dr. Tudor Williams,Mesuro

Dr. Randeep Saini,Mesuro

Simon Mathias,Mesuro

Andreas Henkel,Rohde & Schwarz

[1] Jan Verspecht, David E. Root, “Poly-harmonic Distortion Modeling”, IEEE microwave magazine 1527-3342/06, June 2006.

[2] Takayama, Y. “A New Load-Pull Characterization Method for Microwave Power Transistors” MTT-S International Microwave Symposium Digest 1976, Volume 76, Issue 1, Page(s):218 – 220

[3] Technical data sheet 4T-070 Maury Microwave. “High-Gamma Automated Tuners (HGTTM)”

[4] A. Aldoumani, P.J.Tasker. R.S. Saini, J.W. Bell, T. Williams and J.Lees, “Operation and Calibration of a VNA-based Large signal RF I-V Waveform Measurement System without using a Harmonic Phase Reference Standard” 81st ARFTG microwave measurement conference, June 7th, 2013.

[5] Tudor Williams, Brian Wee, Randeep Saini, Simon Mathias and Marc Vanden Bossche, “A Digital, PXI-Based Active Load-Pull Tuner to MAximise Throughput of a Load-Pull Test Bench”, 83rd ARFTG microwave measurement conference, June 6th, 2014.

[6] Paul Tasker “Practical Waveform Engineering” IEEE Microwave Magazine, December 2009.

[7] Christopher J.Roff. “Application of waveform Engineering to GaN HFET Characterisation and Class F Design” PhD Thesis, University of Wales Cardiff, January 2009.

[8] Iwata, M et al. ‘First Pass Design of A High Power 145W, High Efficiency Class J Amplifier using Waveform Engineering.’ IEEE Radio and Wireless Week 2013.

[9] Wright. P, Lees. J, Benedikt. J, Tasker. P.J, Cripps. S.C ‘A Methodology for Realizing High Efficiency Class-J in a Linear and Broad-band PA’ IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No 12, December 2009.

[9] Woodington. S.P, Saini, R.S, Williams. D, Lees. J, Benedikt. J, Tasker, P.J. “Behavioral model analysis of active harmonic load-pull measurements’ Microwave Symposium Digest, 2010.


開放分享:優(yōu)質(zhì)有限元技術(shù)文章,助你自學(xué)成才

相關(guān)標(biāo)簽搜索:射頻非線性器件的建模與測試 HFSS電磁分析培訓(xùn) HFSS培訓(xùn)課程 HFSS技術(shù)教程 HFSS無線電仿真 HFSS電磁場仿真 HFSS學(xué)習(xí) HFSS視頻教程 天線基礎(chǔ)知識 HFSS代做 天線代做 Fluent、CFX流體分析 HFSS電磁分析 

編輯
在線報名:
  • 客服在線請直接聯(lián)系我們的客服,您也可以通過下面的方式進(jìn)行在線報名,我們會及時給您回復(fù)電話,謝謝!
驗證碼

全國服務(wù)熱線

1358-032-9919

廣州公司:
廣州市環(huán)市中路306號金鷹大廈3800
電話:13580329919
          135-8032-9919
培訓(xùn)QQ咨詢:點擊咨詢 點擊咨詢
項目QQ咨詢:點擊咨詢
email:kf@1cae.com